381 research outputs found

    14 MeV calibration of JET neutron detectors-phase 1: calibration and characterization of the neutron source

    Get PDF
    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.EURATOM 63305

    Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean conditions

    Get PDF
    Wood formation in European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.e., in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at 1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech forest in this region. Microcores containing phloem, cambium and xylem were collected biweekly from twenty-four trees from the beginning of March to the end of November to assess the different phases of wood formation. The samples were prepared for light microscopy to observe the following phenological phases: onset and end of cell production, onset and end of secondary wall formation in xylem cells and onset of cell maturation. The temporal dynamics of wood formation widely differed among years, altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied between the first week of May and the third week of June. Cambial activity then slowed down and stopped in summer, resulting in a length of growing season of 48–75 days. In contrast, the growing season for P. sylvestris started earlier and cambium remained active in autumn, leading to a period of activity varying from 139-170 days. The intra-annual wood-formation pattern is site and species-specific. Comparison with other studies shows a clear latitudinal trend in the duration of wood formation, positive for Fagus sylvatica and negative for P. sylvestris.Publishe

    Integration Concept of an Electron Cyclotron System in DEMO

    Get PDF
    The pre-conceptual layout for an electron cyclotron system (ECS) in DEMO is described. The present DEMO ECS considers only equatorial ports for both plasma heating and neoclassical tearing mode (NTM) control. This differs from ITER, where four launchers in upper oblique ports are dedicated to NTM control and one equatorial EC port for heating and current drive (H&CD) purposes as basic configuration. Rather than upper oblique ports, DEMO has upper vertical ports to allow the vertical removal of the large breeding blanket segments. While ITER is using front steering antennas for NTM control, in DEMO the antennas are recessed behind the breeding blanket and called mid-steering antennas, referred to the radially recessed position to the breeding blanket.In the DEMO pre-conceptual design phase two variants are studied to integrate the ECS in equatorial ports. The first option integrates waveguide bundles at four vertical levels inside EC port plugs with antennas with fixed and movable mid-steering mirrors that are powered by gyrotrons, operating at minimum two different multiples of the fundamental resonance frequency of the microwave output window. Alternatively, the second option integrates fixed antenna launchers connected to frequency step-tunable gyrotrons. The first variant is described in this paper, introducing the design and functional requirements, presenting the equatorial port allocation, the port plug design including its maintenance concept, the basic port cell layout, the transmission line system with diamond windows from the tokamak up to the RF building and the gyrotron sources.The ECS design studies are supported by neutronic and tokamak integration studies, quasi-optical and plasma physics studies, which will be summarized. Physics and technological gaps will be discussed and an outlook to future work will be given

    Integration concept of an Electron Cyclotron System in DEMO

    Get PDF
    The pre-conceptual layout for an electron cyclotron system (ECS) in DEMO is described. The present DEMO ECS considers only equatorial ports for both plasma heating and neoclassical tearing mode (NTM) control. This differs from ITER, where four launchers in upper oblique ports are dedicated to NTM control and one equatorial EC port for heating and current drive (H&CD) purposes as basic configuration. Rather than upper oblique ports, DEMO has upper vertical ports to allow the vertical removal of the large breeding blanket segments. While ITER is using front steering antennas for NTM control, in DEMO the antennas are recessed behind the breeding blanket and called mid-steering antennas, referred to the radially recessed position to the breeding blanket. In the DEMO pre-conceptual design phase two variants are studied to integrate the ECS in equatorial ports. The first option integrates waveguide bundles at four vertical levels inside EC port plugs with antennas with fixed and movable mid-steering mirrors that are powered by gyrotrons, operating at minimum two different multiples of the fundamental resonance frequency of the microwave output window. Alternatively, the second option integrates fixed antenna launchers connected to frequency step-tunable gyrotrons. The first variant is described in this paper, introducing the design and functional requirements, presenting the equatorial port allocation, the port plug design including its maintenance concept, the basic port cell layout, the transmission line system with diamond windows from the tokamak up to the RF building and the gyrotron sources. The ECS design studies are supported by neutronic and tokamak integration studies, quasi-optical and plasma physics studies, which will be summarized. Physics and technological gaps will be discussed and an outlook to future work will be given

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Reply to Elmendorf and Ettinger: Photoperiod playsa dominantand irreplaceable role in triggering secondary growth resumption

    Get PDF
    In their Letter, Elmendorf and Ettinger (1) question the dominant role of photoperiod in driving secondary growth resumption (hereafter referred to as xylem formation onset) of the Northern Hemisphere conifers, recently reported by Huang et al. (2). Their opinions are grounded on the following three aspects, including 1) the seasonality of the photoperiod, 2) the dependence of the predictor variables (e.g., photoperiod, forcing, and chilling) on the response variable (the date of onset of xylem formation, day of the year [DOY]), and 3) the limited value of the obtained models for interannual forecasting. We think they bring up an interesting issue that deserves further discussion and clarification. Photoperiod is acknowledged to regulate spring bud swelling while wood formation starts (3, 4). Although photoperiod seasonality occurs at each site, its influence is marginal in our study given that the analysis involved comparisons among sites across the Northern Hemisphere. Our conclusion that photoperiod plays a dominant role was built upon the combination of several coherent pieces of evidence, rather than “the crux of Huang et al….” as they pointed out. First, we clearly stated that model 2, which modeled DOY as a function of the mean annual temperature of the site (MAT), forcing, chilling, and soil moisture, was considered the best model in terms of parsimony according to minimum Akaike information criterion and Bayesian information criterion, rather than R2 as referred to in their Letter. Second, photoperiod interacted with MAT and can explain 61.7% of the variance of MAT alone (2). Therefore, we concluded that secondary growth resumption was driven primarily by MAT and photoperiod or by their interaction, which is challenging to be disentangled without experimental data, we agree. In terms of biological functioning, they play an ..

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate
    corecore